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Introduction

If mathematics educators and teachers had to choose the single most important

principle for the learning of mathematics, they would probably allude to the importance

of “active mathematical experiences.” One intriguing way of adding an element of

active experience to a mathematics class is to fold paper. Forming straight lines by

folding creases in a piece of paper is an interesting way of discovering and

demonstrating relation- ships among lines and angles. Once a relationship has been

shown by folding paper, formal work on it later does not seem so foreign. Paper

folding not only simplifies the learning of mathematics—it also builds an experiential

base necessary for further learning.

The concepts and ideas of motion, or transformation, geometry are becoming standard

fare for the mathematics curriculum. Paper folding offers many opportunities for

illustrating these ideas. Folding a paper in half and making the halves coincident is an

excellent physical model for a line reflection.

The exercises in this publication are appropriate at many different grade levels. Some

exercises can profitably be done by students at a relatively advanced level—the entire

section on conics, for example, is adapted for senior high school students. Other

exercises, the simpler ones, have been enjoyed by elementary school pupils. Most of

the introductory exercises would probably be appropriate for junior high school

students. Many of the exercises are recreational and are of an enrichment nature. A few

exercises are of a pattern type, such as the “dragon curves.”

The only materials needed for paper-folding exercises are paper, felt pen, straightedge,

and scissors. Although any type of paper may be used, waxed paper has a number of

advantages: a crease becomes a distinct white line, and the transparency helps students

“see” that in folding, lines and points are made coincident by placing one on the other.

Although paper folding is easy, it is not always easy to give clear instructions to

students either orally or in writing. It is helpful to supplement demonstrations with

directions and diagrams. In the text that follows, the diagrams are numbered with

reference to the related exercise. They are not numbered consecutively. As the

descriptions are read, the described folding should be performed. After these folding

have been practiced, it is likely that the method can be extended to many more

complex constructions. In mathematics we always make certain basic assumptions on

which we build a mathematical structure. In paper folding we assume the following

postulates:



-Paper can he folded so that tile crease formed is a straight line.

-Paper can be folded so that the crease passes through one or two given points.

-Paper can be folded so that a point can be made coincident with another point on the

same sheet.

-Paper can be folded so that a point on the paper can be made coincident with a given

line on the same sheet and the resulting crease made to pass through a second given

point provided that the second point is not in the interior of a parabola that has the first

point as focus and the given line as directrix. (A parabola forms the boundary between

a convex region [interior] and a non-convex region [exterior] of the plane.)

-Paper can be folded so that straight lines on the same sheet can be made coincident.

-Line and angles are said to be congruent when they can be made to coincide by

folding the paper.

If these assumptions are accepted, then it is possible to perform all the constructions

of plane Euclidean geometry by folding and creasing.

Patterns for folding a great variety of polyhedra can be found in the following publications:

Cundy, H. M., and A. P. Rollett. Mathematical Models. 2nd ed. London: Oxford University

Press, 1961.

Hartley, Miles C. Patterns of Polyhedrons. Chicago: The Author, 1945, (No longer in print.)

Stewart, B. M. Adventures among the Toroids. Okcinus, Mich.: The Author, 1970.

References on paper folding:

Barnett, I. A., “Geometrical Constructions Arising from Simple Algebraic Identities

‘ School Science and Mathematics 38 (1938): 521-27.

Butts, Barbara B. “Cutting Stars and Regular Polygons for Decorations.” School Science and

Mathematics 50 (1950): 645-49.

Davits Chandler, and Donald Knuth. “Number Representations and Dragon Curvet;—I.” Journal

of Recreational Mathematics 3 (April 1970): 66-81.

Joseph, Margaret.   “Hexahexaflexagrams.”   Mathematics Teacher 44 (April 1951) : 247-48

Leeming, Joseph. Fun with Paper, Philadelphia: J. P. Lippincott Co., 1939.

Pedersen, Jean J. “Some Whimsical Geometry.” Mathematics Teacher 65 (October 1972):

513-21

Row, T. Sundara. Geometric Exercises in Paper Folding. Rev. ed. Edited by W. W. Beman and

D. E. Smith. Gloucester, Mass.: Peter Smith, 1958.

Rupp, C. A. “On a Transformation by Paper Folding.” American Mathematical Monthly 31

(November 1924): 432-35.

Saupe, Ethel. “Simple Paper Models of the Conic Sections” Mathematics Teacher 48 (January

1955): 42-44.

Uth, Carl. “Teaching Aid for Developing (a + 6) (a — 6).” Mathematics Teacher 48 (April

1955): 247-49. Yates, Robert C. Geometrical Tools. St. Louis: Educational Publishers, 1949.

(No longer in print.)

Since this publication is a revised edition of Donovan Johnson’s classic Paper Folding for the

Mathematics Class, a great deal of credit must go to him for providing so much of the inspiration

and information that went into the making of this publication.



How to Fold the Basic Constructions

A variety of geometric figures and relationships can be demonstrated by using the

following directions. If you have a supply of waxed paper and a couple of felt marking

pens, you are all set for a new way of learning some mathematics.

1. Folding a straight line

Fold over any point P of one portion of a sheet of paper

and hold it coincident with any point Q of the other portion.

While these points are held tightly together by the thumb

and forefinger of one hand, crease the fold with the thumb

and forefinger of the other hand. Then extend the crease in

both directions to form a straight line. From any point on the

crease the distances to P and to Q are equal. Why must the

crease form a straight line?

2. A straight line through a given point

Carefully form a short crease that passes

through the given point. Extend the crease

as described previously. (Fig.2)

 Fig 1

3. A line perpendicular to a given straight line

Fold the sheet over so that a segment of the given line AB is

folded over onto itself. Holding the lilies together with the

thumb and forefinger of one hand, form the crease as in

exercise 1. (Fig. 3.)

The line AB is reflected onto itself by a reflection in the line

formed by the crease, Why is the straight angle formed by

the given line AB bisected by the crease CD?

 Fig 3

4. The perpendicular to a line at a point on the line

Fold the paper so that a segment of the given line

AB is folded over onto itself and so that the crease

passes through the given point P. (Fig. 4.)

Again the line AB is reflected onto itself in a
 Fig 4

Mathematically, the point P is called the image of point Q in a reflection in the line

formed by the crease. Conversely, Q is the image of P in the same reflection.

 Fig 2

reflection in the line formed by the crease. The point P is its own image in this

reflection. Why is the fold through P perpendicular to AB?

5. A line perpendicular to a given line and passing through a given point P not on the line

Use the same method of folding as

outlined in exercise 4. (Fig. 5.)

 Fig 5



6.  The perpendicular bisector of a given line segment

Fold the paper so that the endpoints of the given line AB are

coincident. Why is the crease CD the perpendicular bisector

of AB? Locate any point on the perpendicular bisector. Is this

point equally distant from A and B? (Fig. 6.)

What is the image of the line from a point on the

perpendicular bisector to A when it is reflected in the

perpendicular bisector?

7. A line parallel to a given straight line

First fold the perpendicular EF to the given line AB as

in exercise 3. Next fold a perpendicular to EF. Why is

this last crease CD parallel to the given line AB?

8. A line through a given point and parallel to a given straight line

9. The bisector of a given angle

Fold and crease the paper so that the legs CA and CB of the

given angle ACE coincide.  Why  must the  crease pass

through the vertex of the angle? How can you show that the

angle is bisected? (Fig. 9.) An angle is reflected onto itself in a

reflection in its bisector.

10. The location of equally spaced points along a line

Establish any convenient length as the unit length by folding a

segment of the line onto itself. Form several equal and parallel

folds by folding back and forth and creasing to form folds

similar to those of an accordion. (Fig. 10.)

 Fig 6

 Fig 7

 Fig 8

First fold a line EF through the given point P

perpendicular to the given line AB as in exercise 5. In a

similar way, fold a line CD through the given point P and

perpendicular to the crease EF formed by the first fold.

Why does this crease provide the required line? (Fig. 8.)

 Fig 9

 Fig 10

11. The formation of a right angle

Any of the previous constructions involving perpendiculars can be used to produce

right angles. See exercises 3, 4, 5, and 6.



Geometric Concepts Related to Reflections Illustrated by Paper Folding

12. Vertical angles

13. The midpoint of the hypotenuse of a right triangle

14.  The base angles of an isosceles triangle

AB and CD are two lines that intersect at O. Fold

and crease the paper through vertex O, placing BO

on CO. Do AO and DO coincide? Are vertical

angles congruent? (Fig. 12A.)

With different-colored felt pens draw the lines AB and CD

intersecting at O. For convenience, make each of a pair of

vertical angles less than 450. Fold two creases EF and GH

in the paper so that they are perpendicular at O. Neither of

these creases should be in the interiors of the vertical

angles. (Fig. 12B.)

Fold the paper along line EF. Follow this by folding along

line GH. Now the vertical angles should coincide. Line AB

should coincide with itself, and line CD should coincide

with itself. What differences do you see between the

results of figures 12A and 12B?

 Fig 12A

 Fig 12B

Mathematically, one of the vertical angles in figure 12B has been rotated 1800 with O as

the center. Also, in the pair of vertical angles, one of the angles is the image of the other

after a reflection in O.

 Fig 13

The isosceles triangle ABC is given with AB

congruent to BC. Fold line ED perpendicular to

AC. Compare angle A and angle C by folding

along ED.

The image of angle A is angle C in a reflection in

BD. What is the image of angle C? Are angles A

and C congruent?

a) Draw any right triangle ABC (fig. 13).

b) Find the midpoint D of hypotenuse AB by

folding. Fold the line from the midpoint D to C.

c) Compare CD and ED by folding the angle

bisector of BDC. What is the image of CD in a

reflection in this angle bisector?

 Fig 14



15. The intersection of the angle bisectors of a triangle

16. The Intersection at the perpendicular bisectors at the sides of a triangle

17. The intersection at the medians at a triangle

Fold the bisectors of each angle of the given triangle. Do the

bisectors intersect in a common point? What is the point of

intersection of the angle bisectors called? Fold the perpendiculars

from this point of intersection to each of the sides of the triangle.

Compare ID, IE, and IF by folding. (Fig. 15.)

ID is the image of IF in a reflection in IC. What is the image of IE

in a reflection in IB? What conclusions can be made about ID,

IE, and IF?

 Fig 15

Fold the perpendicular bisectors of each side of the

given acute triangle. What is the common point of

intersection of these lines called? Fold lines from this

point to each vertex of the triangle. Compare these

lengths by folding. (Fig. 16.)

AN is the image of CN in a reflection in ND. What is

the image of NB in a reflection in NE? What

conclusions can be made about AN, BN, and NC?
 Fig 16

Bisect the three sides of the given triangle. Fold lines

from the midpoint of each side to the opposite

vertex. What is the point of intersection of these

lines called? Try balancing the triangle by placing it

on a pin at the intersection of the medians.

What is this point called?

Fold a line perpendicular to BE through G.  E’ is the

point on the median that coincides with E when the

triangle is folded along this perpendicular line. E’ is

the image of E in a reflection in the line

perpendicular to BE through G. If another line

perpendicular to BE is folded through E’, then what

is the image of B in a reflection in this line? (Fig. 17.)

Repeat this same procedure for the other two

medians. What can be concluded about the position

of G on each of the three medians?

 Fig 17



18.  The area of a parallelogram

19.  The square on the hypotenuse is equal to the sum

of the squares on the two other legs of a right triangle

20. The diagonals of a parallelogram

Fold the diagonals of a given parallelogram. Compare the

lengths of BE and AE by folding the bisector of angle BEA.

Are the diagonals equal in length? Fold a line perpendicular

to ED through E. Compare the lengths of EB and ED by

folding along this perpendicular line. What is the image of D

in a reflection in this perpendicular line? Repeat the same

procedure for the other diagonal AC. Do the diagonals of a

parallelogram bisect each other? (See fig. 20. Also, see

Appendix C for an enlarged model of figure 20.)

Cut out a trapezoid with one side CB perpendicular to

the parallel sides. Fold the altitude DE· Fold CF

parallel to AD. For convenience the trapezoid should

be cut so that the length of EF is greater than the length

of FB. Fold FG’ perpendicular to AB. After folding

triangle FBC over line FG, make another fold at HJ so

 Fig 18

that B coincides with E and C coincides with D. Does F coincide with A? Are triangles

ADE and FCB congruent? (See fig. 18. Figure 18 and others so noted are included in

Appendix C, where they appear large enough for ditto masters to be made from them.)

Mathematically, the result of reflecting triangle FCB in FG and then in HJ is a slide, or

translation, in the direction of B to E. Why is this terminology appropriate?

When triangle FCB is folded back, ADCF is a parallelogram. When triangle ADE is

folded back, DCBE is a rectangle. Is rectangle BCDE equal in area to parallelogram

ADCF? What is the formula, for the area of a parallelogram?

Use a given square ABCD. Make a crease EF perpendicular

to sides AD and BC. Fold diagonals AC and ED. (See fig.

19A.  Also, see Appendix C for an enlarged model of figure

19A.) Fold along diagonal AC. Crease the resulting double

thickness along GF and GE (fig. 19B). When the square is

opened hat, the line HI will have been formed (fig. 19C). HI is

tile image of FE in a reflection in AC.

Folding along the diagonal ED will form the liner JK and LM.

 Fig 19-A

 Fig 19-B

 Fig 19-C

Fold lines EK, KM, MH, and HE. Let

the measure of EK = c, EC = a, and

CK = b. Then equate the area of

EKMH to the sum of the areas of

NOPG anti the four triangles ENK,

OKM, MPH, and HGE.  If this

equation is written in terms of a, b,

and c, then what is the result?

 Fig 20



21. The median of a trapezoid

22. The diagonals of a rhombus

23. A line midway between the base bad vertex of a triangle

Fold the altitudes at both ends of the shorter base of

the trapezoid ABCD. Bisect each nonparallel side

and connect these midpoints with a crease EF.

Compare DG and CH with GI and HJ respectively

by folding along EF. What are the images of DG and

CH in a reflection in EF? What is the image of CD in

this same reflection? Fold lines perpendicular to AB

through E and F. What are the images of A and B in

reflections in these respective perpendicular lines?

How does the sum of CD app AB compare with the

median EF? (See fig. 21. Also, see Appendix C for

an enlarged model of figure 21.)

 Fig 21

Fold the diagonals of a given rhombus ABCD. Compare

AO and RO to OC and OD respectively by folding along

the diagonals. What is the image of AO in a reflection in

ED? What is the image of angle ABD in a reflection in

BD? What conclusions can you make about the

diagonals of a rhombus? Is triangle ABD congruent to

triangle CBD? (See fig. 22 Also, see Appendix C for an

enlarged model of figure 22.)
 Fig 22

Bisect two sides of the triangle ABC (fig. 23). Fold a

line EF through the midpoints. Fold the altitude to the

side that is not bisected. Compare BG and GD by

folding along line EF. What is the image of BG in a

reflection in EF? Bisect GD. Fold a line perpendicular

to ED through H.

What is the image of EF in a reflection in this

perpendicular line? Is EF parallel to AC? Fold lines

perpendicular to AC through E and through F. What

are the images of A and of C when reflected in El and

FJ respectively? How does the length of EF compare

with the length of AC?

 Fig 23



24.  The sum of the angles of a triangle

25. The area of a triangle

26.  The intersection of the altitudes of a triangle

a) Fold the altitude ED of the given triangle ABC (fig. 24A).

b) Fold the vertex B onto the base of the

altitude, D) (fig. 24B). How is line EF related

to line AC? How are AE and EB related?

c) Fold the base angle vertices A and C to the base of the

altitude, D (fig. 24C). Does the sum of angle A, angle B, and

angle C make up it straight angle?
 Fig 24-C

 Fig 24-B

 Fig 24-A

In figure 24C, the rectangular shape has sides whose

measures are equal to one-half the base AC of triangle ABC

and one-half tile altitude BD (fig. 25). What is the area of the

rectangle? How are the areas of this rectangle and the original

triangle related? What is the area of the triangle?  Fig 25

Fold tile altitudes to each side of the given triangle (fig.

26). Do they intersect in a common point? What is the

intersection point of tile altitudes called? Are there any

relationships among the distances from the point of

intersection of the altitudes to the vertices and bases of

the triangle? Repeat this exercise for an obtuse triangle.
 Fig 26



Circle Relationships Shown by Paper Folding

27. The diameter of a circle

28. The center of a circle

29. The center of a circle of which only a portion

(which includes the center) is available

30. Equal chords and equal arcs in the same circle

31. A diameter perpendicular to a chord

Fold the circle onto itself (fig. 27). Does the fold line AB

bisect the circle? What name is given to line AB? What is the

image of the circle when it is reflected in line AB? The circle

is said to have line symmetry with respect to line AB.
 Fig 27

Fold two mutually perpendicular diameters (fig. 28).

Are the diameters bisected ?

At what point do the diameters intersect?

What is the image of AO in a reflection in CD?  Fig 28

Fold a chord AB and a chord BC (fig. 29). Fold tile perpendicular

bisector of AB. From any point on this perpendicular bisector, the

distance to A is the same as the distance to B. How could this be

shown?  Fold the perpendicular bisector of BC. It intersects the

other perpendicular bisector at M. What is true of AM, MB and

MC? Why is M the center of the circle?

 Fig 29

Locate the center O of the circle by folding two diameters. Fold the

circle along a diameter ED. From some point C, fold the semicircle

along CO (fig. 30A). This forms two radii, CO and BO (fig. 30B).

How does are AC compare with are A? What is the image of are

AC in a reflection in AD? Fold chords AB and AC. How does chord

AC compare with chord AB? How does central angle COA compare

with central angle AOB? Fold lines through O perpendicular to AC and

to AB. By folding, compare AE with EC and AF with FB. What is the

image of EC in a reflection in EO? Answer the same question for a

reflection in AD. Compare EO with FO by folding along AD. What

generalizations can be made about equal chords and equal arcs of the

same circle?

 Fig 30-A

 Fig 30-B

Fold any chord AB (fig. 31). Fold a diameter CD perpendicular

to this chord. Compare the segments AE and EB of the given

chord. Compare the subtended arcs AC and CR.

 Fig 31



32. A radius that bisects the angle between two radii

33. Arcs of a circle intercepted by parallel lines

34.  The angle inscribed in a semicircle

35.  A tangent to a circle at a given point on the circle

Fold any two radii, AO and BO (fig. 32). Fold the chord AB.

Fold the bisector OC of the angle between the radii AO and BO.

How is the bisector of angle AOB related to the chord AR?

What is the image of are AC in a reflection in angle bisector CO?  Fig 32

Fold any diameter AB of circle O (fig. 33).

Fold two chords, each perpendicular to AE.

What are the images of E and F in a reflection in

AB? Compare are EF to are CD by folding.  Fig 33

Fold diameter AB (fig. 34). Fold a chord AC. Extend AC.

Likewise, fold CB and extend it. What is the image of CB

is a reflection in AC? What is the size of the angle formed

by the chords AC and BC?
 Fig 34

Fold the diameter of the given circle passing through the

given point P on the circle (fig. 35). At P, fold the line

perpendicular to the diameter. Why is this perpendicular

line tangent to the circle? If this perpendicular line passed

through another point Q on the circle, then what would be

true of the image of Q in a reflection in the diameter?
 Fig 35



Algebra by paper Folding

36. (ax + by) · (cx + dy)

a) Let any rectangular sheet of paper

represent a rectangle with dimensions

x and x + y (fig. 36A).

b) To determine y, fold the upper left-hand

vertex down to the bottom edge (fig. 36B).

Fold along VU. The measures of RT and UZ

are x and y respectively. Fold Z to point W on

UV. Fold along WL. (Fig. 36C.)

c) Unfold and return to the original

rectangle. RTVU is a square x units on each

side. UVSZ is a rectangle with dimensions x

and y. UWLZ is a square y units on each

side. (Fig. 36D.)

d) Cut out several model rectangles with

sides x and y and several squares with sides

of x and of y. These will be needed in the

following exercises. For convenience, color

one face of the model rectangles red, blue,

or some other bright color, and leave the

opposite face white.

e) Label the rectangle and squares as in

figure 36E. The square formed by M, N,

N, and Q is x + y on a side. Its area is

(x + y) · (x + y). Since the areas of M, N,

and Q are x2, x · y, and y2, respectively,

we have (x + y) (x + y) = x2 + xy + xy +

y2 = x2 + 2xy + y2.

 Fig 36-A

 Fig 36-B

 Fig 36-C

 Fig 36-D

 Fig 36-E



f) Mathematically, the area of the rectangle in

figure 36F is (2x + 3y) . (2x + y). Summing the

areas of the Ms, Ns, and Qs, respectively, we

obtain (2x + 3y) (2x + y) = 4x2 + 8xy + 3y2.

g) Assume that the product (3x - 2y) (2x - y) is to be found. Arrange the various

rectangles and squares so that they make up a rectangle that is 3x + 2y on one side and

2x + y on an adjacent side. To begin with, all the rectangles should be white side up.

To represent 3x - 2y, turn rectangles 4, 5, 9, and 10 and squares 14 and 15 over,

exposing the colored side. To represent 2x - y, turn rectangles 11, 12, and 13 and

squares 14 and 15 over in the same manner. Now squares 14 and 15 have been turned

over twice, again exposing the white sides. (Fig. 36G;.)

The squares 1, 2, 3, 6, 7, 8, 14, and 15 represent positive products. The rectangles 4,

5, 9, 10, 11, 12, and 13 each represent the product - x · y. Thus, (3x - 2y) (2x - y) =

6x2 – 7xy + 2y2.

h) Assume that the product (x + y) (x - y) is to be found. In a

manner similar to that of the preceding exercise, arrange the

squares and rectangles in such a way that they make up a square

that is x + y on a side. All the rectangles and squares should be

white side up. To represent a — y, turn rectangle 2 and square 4

over. Since rectangles 2 and 3 represent products of different

sign, (x + y) (x - y) = x2 - xy + xy - y2 = x2 - y2  (Fig. 36-H.)

 Fig 36-F

 Fig 36-G

 Fig 36-H



37. Multiplication and division of a and b

Fold two intersecting lines, X’X and Y’Y, intersecting at O. Coordinatize each of the

lines by folding equally spaced points. Let OP and OQ represent p and q

respectively. Fold perpendiculars to X’X and Y’Y at P and Q, intersecting at M. Fold

a line determined by M and U. OU is the line representing +1. Now find the midpoint

of UM by folding. Let T be this midpoint. Now U is reflected in some line that passes

through T so that the image of U is on X’X. There will be two such points if x2 - px

+ q = 0 has two real, unequal roots. If these two points are R and S, then OR and

OS represent the roots in both magnitude and sign. (Fig. 38.)

To find R and S, fold the paper, without creasing, along lines that pass through T.

By adjusting the fold, it is possible to make C’ coincide with X’X at R and S.

The procedure is illustrated below using the equation x2 – 5x + 6 = 0.

Notice that OR = 2 and OS = 3 in measure.

A circle can be drawn through Q, U, R, and S. How can you show this? Why must

OR and OS be representations of the roots of the equation?

Fold a line passing through A and B. Fold a line passing through U parallel to AB. Let

Q he the point of intersection of this line and X’X. Then OQ represents the quotient a

b in magnitude and sign (fig. 37B).

Fold two perpendicular lines, X’X and Y’Y, intersecting at O. Fold a series of equally

spaced points on the two lines. Be sure to include O in the points. These folded points

will form a coordinate system for the plane of the paper.

Let OU be +1. Define OA and OB as directed line segments representing a and b

respectively (fig. 37A). Join U to A by folding a line through these two points. Through

B fold a line parallel to AN and let P be the point of intersection of this line and X’X.

Now OP represents the product of a and b in magnitude and sign. In figure 37A, a was

positive and b was negative.

 Fig 37-A

38.  Solving x2 - px + q = 0, p and q integer

 Fig 38



Star and Polygon Construction

39. Triangle

40. Regular hexagon, equilateral triangle, and three-pointed star

Fold and crease a piece of paper. This crease is shown as AB in figure 40A. From

some point O on AR, fold OR to position OB’ so that, angle AOB’ = angle B’OE.

The congruent angles are most easily obtained by means of a protractor. They can also

be approximated by judicious folding. Crease OB so that OA falls on OE (fig. 40B.).

In figure 40B, YZ is perpendicular to OE, and the measures of OX and OW are equal.

Cutting along XW results in a regular hexagon. An equilateral triangle results when a cut

is made along XZ. Cutting along XY results in a three-pointed

41. Equilateral Triangle

42.  Isosceles triangle

Fold any three nonparallel

creases that will intersect

on the sheet (fig. 39).

 Fig 39

 Fig 40-A  Fig 40-B

a) Fold the median EF of rectangle ABCD (fig. 41).

b) Fold vertex A onto EF so that the resulting crease,

GB, passes through B. Denote by J the position of A

on EF. Return to original position by unfolding.

Fold line GJ extending it to H.

c) BY folding, show that BJ is perpendicular to GH.

 Fig 41

d) What is the image of angle GBJ in a reflection in BJ? What is the image of angle

ABG in a reflection in BG?

e) Fold the angle bisector of angle BGH and of angle GHB. What conclusions can be

made after reflections in these angle bisectors?

f) Why is triangle BGH an equilateral triangle?

Fold the perpendicular bisector of side

AB of rectangle ABCD. From any point P

on the perpendicular bisector, fold lines to

vertices A and B. What conclusions can

be made after a reflection in this

perpendicular?

Why is triangle ABP an isosceles triangle?

 Fig 42



43. Hexagon

44. Regular octagon, square, and four-pointed star

45. Rectangle

46. Square

Fold the three vertices of an equilateral triangle to

its center (fig. 43). How is this center found?

Is the hexagon DEFGHI equilateral?

How does the area of triangle ABC compare with

that of hexagon DEFGHI?

 Fig 43

Fold a piece of paper in half and crease. Call the resulting line

AB. Fold the perpendicular bisector of AB. Call this OE. (Fig.

44.) Fold OA and OB over so that they coincide with OE and

crease OF. Mark point W so that triangle OXW is isosceles, and

mark point Z so that XZ is perpendicular to OF. Cutting along

XW will result in a regular octagon. A square results from a cut

along XZ. Cutting along XY gives a four- pointed star.

 Fig 44

Bisect side EF by folding. Fold a line perpendicular to HF through midpoint I. By

reflecting rectangle DFHC in the line JI, what relation- ships among lines and angles

appear to be true? Fold a line perpendicular to GH through midpoint K. Reflect the

rectangle DFHG in KL and note what relationships appear to be true.

 Fig 45

Fold a rectangle so that one of the right angles

is bisected (line BE) Fold FE perpendicular to

AD (fig. 46). Why is ABFE a square? What is

the image of F in a reflection in BE? What is

the image of C in a reflection in ED?

 Fig 46

Fold any straight line AB. At points D and F on AB, fold lines perpendicular to AB. At

point G on line CD, fold a line perpendicular to CD. This perpendicular line intersects

EF at H. (Fig. 45.) Show by folding that GH is perpendicular to EF. Whet is the image

of EF in a reflection in GH?



47.  Other relationships in the square derived by reflections

48. Octagon

Find the midpoints of the sides of ABCD by folding. Fold the diagonals AC and ED.

Fold all possible lines determined by midpoints E, F, G, and H. (See fig. 47A. Also,

see Appendix C for an enlarged model of figure 47A. )

a) What are the images of B, F, and C in a reflection in EG? From this result, what line

segments are congruent?

b) What is the image of angle BOF in a reflection in EG? Consequently, what angles are

congruent?

c) What is the image of angle FOC in a reflection in AC? In EG? In BD? In FH?

d) What is the image of C in a reflection in FG?

e) What lines can be shown to be perpendicular by folding?

f) How does the area of inscribed square EFGH compare with the original square

ABCD?

 Fig 47-A

If the area of the original square

ABCD is 1-square foot, what are

the areas of the other squares

formed by folding the corners to

the center? (Fig. 47B.)

 Fig 47-A

Fold a square ABCD to obtain the midpoints

E, F, G, and H. Fold the inscribed square

EFGH. By folding, bisect the angles formed

by the sides of the original square and tile

sides of the inscribed square EFGH (fig. 48).

Fold the various diagonals AC, ED, EG, and

FH. What are the images of HI, EI, EJ, and

JF in a reflection in line FH? What are the

images of the sides of octagon EJFKGLHI in

reflections in lines AC, ED, and EG?

Why is EJFKGLHI a regular octagon?
 Fig 48



49. Regular decagon, regular pentagon, and five-pointed star

50. Six-pointed star, regular hexagon, and regular dodecagon

Fold a piece of paper in half and crease. Call this line AB. If O is the midpoint of AB,

fold and crease along line OE so that angle AOB equals one-half of angle BOE in

measure (fig. 49A). This angle relationship can he assured by using a protractor or can

be approximated by careful folding.  Fold OE over so that it coincides with OB.

Crease line OF (fig. 49B). Crease along OE so that OA falls along OF (fig. 49C).

Triangle OXW is an isosceles triangle. Triangle OXZ is a right triangle. Cutting along

XW results in a regular decagon. Cutting along XZ results in a regular pentagon. A five-

pointed star is produced when a cut is made along XY.

 Fig 49-C Fig 49-B Fig 49-A

Fold a piece of paper in half. Call this line AB. Fold A over on H and crease along OE.

Fold A and B over and crease along OF so that angle EOA equals angle AOF in

measure (fig. 50A). This angle congruence can be assured by using a protractor or can

be approximated by careful folding. Crease on OA, folding OF over to fall along OE

(fig. 50B). Triangle OXW is isosceles. Triangle OXZ is a right triangle. Cutting along

XW XZ, and XY respectively will result in a regular dodecagon, regular hexagon, and a

six-pointed star. Interesting snowflake patterns can he made by cutting notches in the

six-pointed star design.

 Fig 50-A  Fig 50-B



Polygons Constructed by Tying Paper Knots

51. Square

52. Pentagon

53. Hexagon

Use two strips of paper of the same width.

a) Fold each strip over onto itself to form a

loop and crease. Why are the angles that are

formed right angles? (Fig. 51A.)

b) Insert an end of one strip into the loop of the

other so that the strips interlock. Pull the strips

together tightly and cut off the surplus. Why is

the resulting polygon a square? (Fig. 51B.)

 Fig 51-A

 Fig 51-B

Use a long strip of constant width. Tie an overhand knot (Fig. 52A). Tighten the knot

and crease flat (fig. 52B). Cut the surplus lengths. Unfold and consider the set of

trapezoids formed by the creases. How many trapezoids are formed? Compare the

trapezoids by folding. What conclusions can be made about the pentagon obtained?

Use two long strips of paper of equal width. Tie a square knot as shown in figure 53A.

Tighten and crease it flat to produce a hexagon. It may he easier to untie tile knot and

fold each piece separately according to figure 53B. After tightening and flattening, cut

off the surplus lengths. Unfold and consider the trapezoids formed. How many

trapezoids are formed on each strip? Compare the sizes of these trapezoids.

 Fig 53-B

 Fig 53-A

 Fig 52-A
 Fig 52-B



51. Heptagon

Use a long strip of constant width. Tie a knot as illustrated in figure 54A. Tighten and

crease fist (fig. 54B). How many trapezoids are formed when the knot is untied?

 Fig 54-A

 Fig 54-B

55. Octagon

Use two long strips of the same width. First, tie a loose overhand knot with one strip

like  that  for  the  pentagon  above. Figure 55 shows this tie with the shaded strip

going  from  1-2-3-4-5.  With  the second strip, start at 6, pass over 1-2 and under 3-4.

Bend up at 7. Pass under 4-5 and  1-2.  Bend up at 8.  Pass under 3-4 and 6-7. Bend

up at 9.  Pass over 3-4, under 1-8 and 4-5, emerging at 10. Tighten and crease flat.

Cut surplus lengths 1,5, 6, and 10 (fig. 55).

This construction is not easy. Another tack might be to analyze the knots and their

trapezoids to determine the lengths and the sizes of angles involved. Using a protractor,

a ruler, and the obtained information would make the constructions considerably easier.

 Fig 55



Symmetry

56. Line symmetry

57. Line and point symmetry

58.  Symmetrical design

Fold a line in a sheet of paper. Cut out a kite-shaped figure similar to figures 56A and

56B. Fold this figure along any other line. What differences do you note between the

folding in the two lines? The first fold is a symmetry line for the figure. What is the

image of the figure in a reflection in the first fold line?

Fold two perpendicular creases. Keeping

the paper folded, cut out a plane curve

with a scissors ( fig. 57A)

What are the images of the figure when

they are reflected in Ali and in CD? Line

EF is drawn so that it passes through

O and is different from AB and CD.

(Fig. 57B.)

Is EF a line of symmetry for the

figure? How can you show this?

How is O related to EF? Answer these

questions for various positions of EF.

Point O is a point of symmetry for the

figure. Can you see why?

 Fig 57-A

 Fig 56-A

 Fig 56-B

 Fig 57-B

Fold two perpendicular creases, dividing the

paper into quadrants. Fold once more, bisecting

the folded right angles. Keep the paper folded.

Trim the edge opposite the 450 angle so that all

folded parts are equal. While the paper remains

folded, cut odd-shaped notches and holes.

Be sure to leave parts of the edges intact.

(Fig. 58A.) When the paper is unfolded, a

symmetrical design is apparent (fig. 58B).
 Fig 58-A  Fig 58-B



Conic Sections

59.  Parabola

Draw any straight line m as a directrix. Mark a point

F not on the given line as the focus. Fold a line

perpendicular to line m. Mark the point of intersection of

line m and the line perpendicular to m. Call it point G.

Fold the paper over so that point F coincides with point

G and crease. Call the point of intersection of this crease

and the perpendicular line H. (Fig. 59). Repeat this

operation twenty to thirty times by using different lines

perpendicular to m. The point H will be on a parabola

with focus F and directrix m. The creases formed by

folding point F onto point G are tangents to the

parabola. The tangents are said to “envelop” the

parabolic curve.

60.  Ellipse

What is the image of FH when reflected in the crease formed by the coincidence of F

and G? What geometric facts concerning tangents to parabola can be obtained from

this?

Imagine that the inside of the parabolic curve is a mirrored surface. Rays of light, which

are parallel to the lines perpendicular to m, strike the mirror. Where are these rays of light

reflected after striking the mirror?

Draw a circle with center O. Locate a point F inside the circle. Mark a point X on the

circle. Fold the point F onto X and crease. Fold the diameter that passes through X.

The point of intersection of this diameter and the crease is called P. Repeat this

procedure twenty to thirty times by choosing different locations for X along the circle.

Each crease is tangent to an ellipse with foci F and O. (Fig. 60.) What is the image of

PX under a reflection in ZY? Show how the measure of FP plus the measure of PO is

equal to a constant. Thus, P is on the ellipse, with O and F as foci. Imagine that ZY is a

mirror. Why would a ray of light passing through F and P be reflected through O? Let

R be any point along ZY other than P. Show that the sum of the measures of FR and

RO is greater than the sum of the measures of FP and PO.

Repeat this experiment by using various locations for F. What effect does this have on

the resulting ellipses?

 Fig 60

 Fig 59



61. Hyperbola

61. Similarity and enlargement transformations

a) Draw a triangle ABC. Mark a point D outside the triangle. Fold line AD. Fold point

D onto A and crease. The point of intersection of this crease and link AD is called A’.

Repeat the same procedure for points B and C in order to locate points B’ and C’ (fig.

62A).

Draw a circle with center O. Locate a point F outside the circle. Mark a point X on the

circle. Fold F onto X and crease. This crease is tangent to a hyperbola with O and F as

foci. Fold a diameter through X. The point of intersection of the diameter and the

crease is called P. (Fig. 61.)

What is the image of FP in a reflection in YZ? Show that the

measure of FP minus the measure of PO equals a constant.

Thus, point P is on the hyperbola with foci F and O. Repeat

this procedure twenty to thirty times by choosing different

locations for X along the circle.

Draw a circle that has OF as a diameter. Include the points of

intersection of the two circles as choices for the location of X.

The resulting creases are asymptotes for the hyperbola. What

is the image of the hyperbola in a reflection in OF? What is the

image of the hyperbola in a reflection in a line perpendicular to

OF at the midpoint of OF?

 Fig 61

How is triangle ABC related to triangle A’B’C’? How do the areas of these two

triangles compare?

b) Draw a triangle ABC and point D outside this triangle. Reflect point n in a line

perpendicular to AD at point A. Call this image point A’. Repeat the same procedure

with points B and C in order to locate points B’ and C’. Do the same with point X.

Where is the image point X’? (Fig 62B). How does triangle A’B’C’ compare with

triangle ABC?

c) Draw a triangle ABC and points D and E outside this triangle. Use the procedure

from (a) with point D to locate triangle A’B’C’. Repeat this procedure with triangle

A’B’C’ and point E to locate triangle A”B”C” (fig. 62C). How is triangle A”B”C”

related to triangle ABC? How do their areas compare? Fold lines AA”, BB”, and CC”.

What conclusions can be made after making these folds?

 Fig 62-C

 Fig 62-A  Fig 62-B



Recreations

63.  Mobius strip

 64. Hexaflexagon

Use a strip of paper at least 1.5 inches wide and 24 inches long. To make a Mobius

strip, give one end a half-turn (1800) before gluing it to the other end (fig. 63). If you

draw an unbroken pencil mark on the strip, you will return to the starting point without

crossing an edge. Thus, this strip of paper has only one surface. Stick the point of a

scissors into the center of the paper and cut all the way around. You will be surprised

by the result! Cut the resulting band down the center for a different result. After two

cute how many separate bends do you have?

 Fig 63

The hexaflexagon requires a paper strip that is at least six times its width in length.

a) First fold the strip to locate the center

line CD st one end of the strip (fig. 64A).

c) Fold the strip back so that the crease EG terms

along BE (fig. 64C). What kind of a triangle is EGA?

Next fold forward along GA, forming another triangle.

Continue folding back and forth until ten equilateral

triangles have been formed.  Cut off the excess of the

strip as well as the first right triangle ABE.

 Fig 64-A

 Fig 64-B

 Fig 64-C

b) Fold the strip so that B falls on CD and the

resulting crease AE passes through A (fig. 64B).

Where would the image of A be in a reflection in

BE? What kind of a triangle is ABE?

d) Lay the strip in the position shown in figure

64D and number the triangles accordingly.

e) Turn the strip over and number as in figure

64E. Be sure that triangle 11 is behind triangle 1.

 Fig 64-D FRONT

 Fig 64-E BACK



 Fig 64-F
 Fig 64-G

f) To fold the hexaflexagon, hold the strip in the position shown in figure 64D. Fold

triangle 1 over triangle 2. Then fold triangle 15 onto triangle 14 and triangle 8 onto

triangle 7. Insert the end of the strip, triangle 10, between triangles 1 and 2. If the folding

now gives the arrangements shown in figures 64F and 64G, glue triangle, 1 to 10. If not,

recheck the directions given.

The hexagon can be folded and opened to give a number of designs. Two of these

designs are given in figures 64F and 64G. The designs open easily by folding in the

three single edges, thus forming a three-cornered star and opening out the center.

How many different designs can be obtained?

65. Approximating a 600 angle

Cut a strip of paper two inches wide and about twenty inches long. Cut one end of the

strip off and label the line of cutting t
 0.

 By folding, bisect the angle formed by to and

the edge of the strip. Label the bisector t
1
 and the two congruent angles formed x

0
. The

line t
1
 intersects the other edge of the strip at A

1
. By folding, bisect the obtuse angle

formed at A
1
 by t

1
 and the edge of the strip. This procedure is continued until the

lengths of t
k
 and t

k+1
 appear to be congruent and the angles X

k
 and X

 k+1
  appear to be

congruent. These angles X
 k 

 approach 60-degrees in measure. (Fig. 65.) It is surprising

that no matter what angle X
 0
 is used in the beginning, angles X

 k
 always approach 60-

degrees in measure.

 Fig 65



66. Trisecting an angle

An interesting variation on exercise 65 takes place on a piece of paper whose straight

edges are not parallel (fig. 66). In this situation, angle X
 k
 approaches (theta)/3

 in measure. Thus, we have a way of approximating the trisection of angle B. For

convenience, choose A
 0
 as far away from B as possible. Also, to assure a convenient

convergence, choose t
0

 so that X
 0
 is approximately (theta)/3 in measure.

 Fig 66

67. Dragon curves

Take a long strip of paper and fold it in half from right to left. When it is opened, it has

one crease, which points downward (fig. 67A).  Fold the paper in half two times from

right to left. When it is opened, it has three creases. Reading from left to right, the first

two point downward and the third points upward (fig. 67B). For three folding-in-half

operations, the pattern of creases is (left to right) DDUDDUU, where D and U

represent creases that point downward and upward respectively.

   After n folding operations, how many rectangles are formed and how many creases

are formed? Can you determine the sequence of Ds and Us for four folding-in-half

operations from the sequences that result from the first three foldings?

   Modify the folding above by alternately folding the ends from left to right and then

from right to left. The formulas for determining the number of areas and the number of

creases formed after n foldings will not change, but the sequence of Ds and Us used in

describing the creases does change. Can you figure out how to predict the pattern for

n + 1 folds, knowing the pattern for n folds?

    Another interesting modification is to use a trisecting fold rather than a bisecting

fold. Fold the strip so that the pattern after one trisection fold is DU (fig. 67C).

   How many areas and how many creases are formed after n trisection- folding

operations? Can you determine the sequence of Ds and Us for four trisection foldings,

knowing the sequence for three trisection foldings?

 Fig 67-A  Fig 67-C
 Fig 67-B



68. Proof of the fallacy that every triangle is isosceles

69. Cube

a) Fold a piece of paper down to form a

square and remove the excess strip. The

edge of the cube that will eventually be

formed will be one-fourth the side of this

square (fig. 69A).

b) Fold the paper from corner to corner

and across the center one way through the

midpoint of the sides (fig. 69B). The fold

across the center should be in the opposite

direction to that of the corner-to-corner

folds.

Fold the bisector of the vertex angle and the

perpendicular bisector of the base (fig. 68). These

creases will intersect outside the triangle, which

contradicts the  assumption  that these  lines meet

inside the triangle.
 Fig 68

c) Let the paper fold naturally into the shape shown in figure 69C.

d) Fold the front A and B down to point C (fig. 69D).

 Fig 69-A  Fig 69-B

e) Turn it over and do the same for the back corners F and G. A smaller square will

result (fig. 69E).

f)  The corners on the sides D and E are now double.  Fold the corners D and E so

that they meet in the center. Turn the square over and do the same for the corners on

the back side (fig. 69F).

 Fig 69-C  Fig 69-D

 Fig 69-E  Fig 69-F



g) One end of figure 69F will now be free of loose corners. Fold the loose corners on

the opposite end, H and K, outward on the front to form figure 69G. Do the same for

the corresponding corners on the back.

h) Fold points H and K inward to the center. Do the same with the points on the back

of the form (fig. 69H).

i) Open folds D and E and tuck triangles LHM and KNP into the pockets in D and E.

Do the same with the points on the back (fig. 69I)

j) Blow sharply into the small hold found at O and the cube will inflate. Crease the

edges and the cube is finished (fig. 69J).

 Fig 69-G  Fig 69-H

 Fig 69-I

 Fig 69-J

70. A model of a sphere

Cut three equal circles out of heavy paper. Cut along the lines as shown in figures 70A,

70B, and 70C. Bend the sides of figure 70A toward each other along the dotted lines

AB and CD and pass this piece through the cut in the center of figure 70B. Open figure

70A after it has been pushed through figure 70B.

Bend the sides of figure 70A along the dotted lines EF and GH and bend figure 70B

along the dotted lines IJ and KL. Pass figures 70A and 70B through the cross-shaped

cut m figure 70C. This will form the sphere model shown in figure 70D. This model is

suitable for demonstrating latitude and longitude, time zones, and spherical triangles.

It can also be used as a geometric Christmas tree decoration or in a mobile.

If the model is to be made out of cardboard, figures 70A and 70C should be cut into

two semicircles and fitted into figure 70B.

 Fig 70-A  Fig 70-B  Fig 70-C  Fig 70-D



71. Pop-up dodecahedron

72. Pattern for polyhedra

Cut two patterns as shown in figure 71A out of cardboard. Fold lightly along the

dotted lines. Place these patterns together as shown in figure 71B and attach with a

rubber band. Toss the model into the air and it will form a dodecahedron. If the first

attempt is not successful, change the rubber band or use a different type of cardboard.

 Fig 71-A  Fig 71-B

Cut the following patterns from cardboard. Fold along the dotted lines. Use the tabs

for gluing. (See Appendix C for enlarged models of figures 72A-G.)

Stellated polydedra can be made by

attaching pyramids to each face of these

regular polyhedra. Each pyramid should

have a base congruent to the face of the

polyhedron.

A less frustrating alternative to the “tab

and glue” method of constructing

polyhedra is the “cardboard and rubber

band” method. To use this method, cut

out each face of a polyhedron separately.

On each edge of these pieces, cut a

narrow tab, notched at each end and

folded back. Fasten the pieces

together along matching tabs secured

by rubber bands. Stretch the rubber

bands along the tabs and secure them in

the notches. Tabs one-fourth inch in

width seem to be best for securing the

rubber bands.

 Fig 72-A

 Fig 72-B

 Fig 72-C

 Fig 72-E

 Fig 72-D

Different polyhedra can be made by experimenting with regular polygons of three, four,

five, and six sides. Obviously, all these polygons must have edges that are of equal

length (figs. 72F and 72G).

 Fig 72-F
 Fig 72-G



In the following listing, certain theorems from plane geometry are given. After each

theorem, related exercises from this monograph are noted.

1.  In a plane, through a given point on a given line, there is one and only one line

perpendicular to the given line. (Exercise 4)

2. In a plane, there is one and only one line perpendicular to a given line through a

given point not on the line. (Exercise 5)

3. A segment has one and only one midpoint. (Exercise 6)

4. An angle has one and only one bisector. (Exercise 9)

5. Vertical angles are congruent. (Exercise 12)

6.  The measure of the median to the hypotenuse of a right triangle is equal in measure

to half the hypotenuse. (Exercise 13)

7.  If two sides of a triangle are congruent, then the angles opposite these sides are

congruent. (Exercise 14)

8. The three lines that bisect the angles of triangle ABC are congruent at a point I that is

equidistant from the lines AB, BC, and AC. (Exercise 15)

9.  The three lines that are in the plane of triangle ABC and are the perpendicular

bisectors of the sides of the triangle are concurrent at a point that is equidistant from

the vertices A, B, and C. (Exercise 16) The three medians of a triangle are concurrent

at a point whose distance from any one of the vertices, is two-thirds the length of the

median from that vertex. (Exercise 17) The area of a parallelogram is the product of the

measures of a base and the altitude to that base. (Exercise 18)

12. The square of the measure of the hypotenuse of a right triangle is equal to the sum

of the squares of the measures of the other two sides. (Exercise 19)

13.  The diagonals of a parallelogram bisect each other. (Exercise 20)

14.  The segment that joins the midpoints of the nonparallel sides of a trapezoid is

parallel to the bases, and its measure is one-halt the sum of the measures of the bases.

      (Exercise 21)

15. The diagonals of a rhombus are perpendicular to each other. (Exercise 22)

16. A diagonal of a rhombus bisects the angles formed at the related vertices.

     (Exercise 22)

17. The segment joining the midpoints of two sides of a triangle is parallel to the third

side and is equal to one-half of its measure. (Exercise 23)

18. The sum of the measures of the angles of a triangle is 1800 (Exercise 24)

19.  The area of any triangle is equal to one-half the product of the measures of any

one of its bases and the altitude to that base. (Exercise 25)

20. The three altitude lines of a triangle are concurrent at a point. (Exercise 26)

21. In a circle, the minor arcs of congruent chords are congruent. (Exercise 30)

22. A diameter that is perpendicular to a chord bisects that chord. (Exercise 31)

23. In a circle, congruent central angles intercept congruent minor arcs. (Exercise 32)

24. If two parallel lines intersect a circle, then the intercepted arcs are congruent.

    (Exercise 33)

Appendix A

Plane Geometry Theorems and Related Exercises



25. An angle inscribed in a semicircle is a right angle. (Exercise 34)

26. A tangent to a circle is perpendicular to the radius drawn to the point of contact.

      (Exercise 35)

27.  If two angles of one triangle are congruent respectively to two angles of another

triangle, then the triangles are similar. (Exercise 37)

Appendix B

Some Additional Theorems That Can Be Demonstrated by Paper Folding

1.  The median from the vertex of the angle included by the congruent sides of an

isosceles triangle bisects that angle.

2. The median from the vertex of the angle included by the Congruent sides of an

isosceles triangle is perpendicular to the third side.

3. The bisector of the angle included by the congruent sides of an isosceles triangle

bisects the side opposite that angle.

4. Any two medians of an equilateral triangle are congruent.

5. If two distinct coplanar lines are intersected by a transversal that makes a pair of

alternate interior angles congruent, the lines are parallel.

6.  If two distinct coplanar lines are intersected by a transversal that makes a pair of

corresponding angles congruent, the lines are parallel.


